6,455 research outputs found

    Analytical Model of the Time Developing Turbulent Boundary Layer

    Full text link
    We present an analytical model for the time-developing turbulent boundary layer (TD-TBL) over a flat plate. The model provides explicit formulae for the temporal behavior of the wall-shear stress and both the temporal and spatial distributions of the mean streamwise velocity, the turbulence kinetic energy and Reynolds shear stress. The resulting profiles are in good agreement with the DNS results of spatially-developing turbulent boundary layers at momentum thickness Reynolds number equal to 1430 and 2900. Our analytical model is, to the best of our knowledge, the first of its kind for TD-TBL.Comment: 5pages, 9 figs, JETP Letters, submitte

    Matrix effects in ion-induced emission as observed in Ne collisions with Cu-Mg and Cu-Al alloys

    Get PDF
    Ion induced Auger electron emission is used to study the surfaces of Al, Mg, Cu - 10 at. % Al, Cu - 19.6 at. % Al, and Cu - 7.4 at. % Mg. A neon (Ne) ion beam whose energy is varied from 0.5 to 3 keV is directed at the surface. Excitation of the lighter Ne occurs by the promotion mechanism of Barat and Lichten in asymmetric collisions with Al or Mg atoms. Two principal Auger peaks are observed in the Ne spectrum: one at 22 eV and one at 25 eV. Strong matrix effects are observed in the alloys as a function of energy in which the population of the second peak is greatly enhanced relative to the first over the pure materials. For the pure material over this energy range this ratio is 1.0. For the alloys it can rise to the electronic structure of alloys and to other surface tools such as secondary ion mass spectroscopy

    Group-blind detection with very large antenna arrays in the presence of pilot contamination

    Get PDF
    Massive MIMO is, in general, severely affected by pilot contamination. As opposed to traditional detectors, we propose a group-blind detector that takes into account the presence of pilot contamination. While sticking to the traditional structure of the training phase, where orthogonal pilot sequences are reused, we use the excess antennas at each base station to partially remove interference during the uplink data transmission phase. We analytically derive the asymptotic SINR achievable with group-blind detection, and confirm our findings by simulations. We show, in particular, that in an interference-limited scenario with one dominant interfering cell, the SINR can be doubled compared to non-group-blind detection.Comment: 5 pages, 4 figure

    The effect of residential urban greenness on allergic respiratory diseases in youth: A narrative review

    Get PDF
    Background: Environmental exposures across the life course may be a contributor to the increased worldwide prevalence of respiratory and allergic diseases occurring in the last decades. Asthma and rhinoconjunctivitis especially contribute to the global burden of disease. Greenness has been suggested to have beneficial effects in terms of reduction of occurrence of allergic respiratory diseases. However, the available evidence of a relationship between urban greenness and childhood health outcomes is not yet conclusive. The current review aimed at investigating the current state of evidence, exploring the relationship between children's exposure to residential urban greenness and development of allergic respiratory diseases, jointly considering health outcomes and study design. Methods: The search strategy was designed to identify studies linking urban greenness exposure to asthma, rhinoconjunctivitis, and lung function in children and adolescents. This was a narrative review of literature following PRISMA guidelines performed using electronic search in databases of PubMed and Embase (Ovid) from the date of inception to December 2018. Results: Our search strategy identified 2315 articles; after exclusion of duplicates (n = 701), 1614 articles were screened. Following review of titles and abstracts, 162 articles were identified as potentially eligible. Of these, 148 were excluded following full-text evaluation, and 14 were included in this review. Different methods for assessing greenness exposure were found; the most used was Normalized Difference Vegetation Index. Asthma, wheezing, bronchitis, rhinoconjunctivitis, allergic symptoms, lung function, and allergic sensitization were the outcomes assessed in the identified studies; among them, asthma was the one most frequently investigated. Conclusions: The present review showed inconsistencies in the results mainly due to differences in study design, population, exposure assessment, geographic region, and ascertainment of outcome. Overall, there is a suggestion of an association between urban greenness in early life and the occurrence of allergic respiratory diseases during childhood, although the evidence is still inconsistent. It is therefore hard to draw a conclusive interpretation, so that the understanding of the impact of greenness on allergic respiratory diseases in children and adolescents remains difficult

    Fundamental Limits of Low-Density Spreading NOMA with Fading

    Full text link
    Spectral efficiency of low-density spreading non-orthogonal multiple access channels in the presence of fading is derived for linear detection with independent decoding as well as optimum decoding. The large system limit, where both the number of users and number of signal dimensions grow with fixed ratio, called load, is considered. In the case of optimum decoding, it is found that low-density spreading underperforms dense spreading for all loads. Conversely, linear detection is characterized by different behaviors in the underloaded vs. overloaded regimes. In particular, it is shown that spectral efficiency changes smoothly as load increases. However, in the overloaded regime, the spectral efficiency of low- density spreading is higher than that of dense spreading
    • …
    corecore